Electromagnetic Probes PHENIX results

- Torsten Dahms Stony Brook University
2006 RHIC & AGS Annual Users' Meeting
June 5, 2006

Outline

- Motivation
- Photon Measurements
 - Direct photons in p+p, d+Au and Au+Au
 - External Conversions
 - Low mass internal conversions
- Dielectron continuum
- Summary

The "Little Bang" in the lab

The PHENIX experiment

- Charged particle tracking:
 - -DC, PC1, PC2, PC3
- Electron ID:
 - Cherenkov light RICH
 - -shower EMCal
- Photon ID:
 - -shower EMCal
 - Lead scintillator calorimeter (PbSc)
 - •Lead glass calorimeter (PbGl)
 - -charged particle veto

- Photon measurements
 - -Calorimeter measurement
 - -Beam pipe conversions
 - Internal conversions
- Dielectron continuum

Direct photons in p+p

- Direct photon sources:
 - Compton

$$qg \rightarrow \gamma q$$

Annihilation

$$q\overline{q} \rightarrow \gamma g$$

- $q\overline{q} \rightarrow \gamma g$ Bremsstrahlung
- Test QCD
 - direct participant in parce interaction
 - Less dependent on FF than hadron production
- good agreement with NLO pQCD
- Baseline for Au+Au

Direct photons in d+Au

- Probe cold nuclear matter
- Study initial state effects
- NLO pQCD comparison agrees with 1:
 - → no indication for initial state effect on photon production
 (but large uncertainties)

Direct photons in Au+Au

- Probe the medium
- Photons from all stages of the collision
- Unaffected by the QGP
- Large direct photon excess

N_{coll} scaling of hard processes holds for all centrality classes

Hadron suppression

- π^0 suppressed
- Photons remain unsuppressed
 - → Suppression is not an initial state effect
 - →Evidence for medium effect

$$R_{\mathrm{AA}} = \frac{\mathrm{d}N_{\mathrm{AA}}^{\pi^{0}} / \mathrm{d}p_{\mathrm{T}}}{\langle T_{\mathrm{AA}} \rangle_{\mathrm{f}} \mathrm{d}\sigma_{\mathrm{NN}}^{\pi^{0}} / \mathrm{d}p_{\mathrm{T}}}$$

PRL 94, 232301 (2005)

Thermal photons?

No significant excess at low p_T

- Photon measurements
 - -Calorimeter measurement
 - **Beam pipe conversions**
 - Internal conversions
- Dielectron continuum

The idea: photon conversions

- Clean photon sample: e⁺e⁻ pairs from beam pipe conversions
- Why?
 clear photon identification
 Very good momentum resolution of charged tracks at low p_T
- Procedure
 - Identify conversion photons in the beam pipe
 - Tag π^0 by pairing electron pairs from conversions with photons in EMCal
 - Do the same in simulations
- Double Ratio + π^0 Tagging: efficiencies and acceptance corrections cancel out

For details, see poster presentation

Inclusive photons/tagged photons from π^0

- Conversion pairs are created off-vertex
- Track reconstruction produces apparent opening angle
- Leads to apparent mass ~20MeV/c²
 (m ~ conversion radius)
- Cut on pair orientation in magnetic field to isolate conversions

Simulations: hadronic photons/tagged photons from π^0

- Inclusive photon spectrum
 - π^0 , $\eta \rightarrow \gamma e^+e^-$
 - π^0 parameterization from measured data
 - η from m_T scaling, yield normalized at high p_T (0.45 from measurement)
 - − Use Dalitz decay ($\pi^0 \rightarrow \gamma \gamma \sim \pi^0 \rightarrow \gamma \gamma^* \rightarrow \gamma e^+ e^-$ for $p_T > 0.8$ GeV/c)
- All e^+e^- (from π^0 , η) in the acceptance $\rightarrow p_T$ spectrum of e^+e^-

• If γ from π^0 is also in acceptance

 $\rightarrow p_T$ spectrum of e⁺e⁻ from π^0

Double ratio of data and simulations

Systematic uncertainties:

- conversion background 6%
- •π⁰ background 20%
- reconstruction efficiency 3%
- agreement of conditional acceptance 10%
- → total: ~25%

Systematic errors will improve

- Photon measurements
 - -Calorimeter measurement
 - -Beam pipe conversions
 - -Internal conversions
- Dielectron continuum

The idea

- Start from Dalitz decay
- Calculate inv. mass distribution of Dalitz pairs'

$$\frac{1}{N_{y}}\frac{dN_{ee}}{dm_{ee}} = \frac{2\alpha}{3\pi}\sqrt{1 - \frac{4m_{e}^{2}}{m_{ee}^{2}}(1 + \frac{2m_{e}^{2}}{m_{ee}^{2}})\frac{1}{m_{ee}}|F(m_{ee}^{2})|^{2}(1 - \frac{m_{ee}^{2}}{M^{2}})^{3}}$$

invariant mass of Dalitz pair

invariant mass of virtual photon

form factor

 π^{0}

phase space factor

- Now direct photons
- Any source of real γ produces
 virtual γ with very low mass
- Rate and mass distribution given by same formula
 - No phase space factor for $m_{\rm ee} << p_{\rm T}^{\rm photon}$

In practice

Material conversion pairs removed by analysis cut
Combinatorial background removed by mixed events

- Calculate ratios of various M_{inv} bins to lowest one: R_{data}
- If no direct photons: ratios correspond to Dalitz decays
- If excess: direct photons

Comparison to conventional result

Measured ratio

$$\frac{\gamma^*_{\text{direct}}}{\gamma^*_{\text{incl.}}} = \frac{R_{\text{data}} - R_{\pi^0 + \eta}}{R_{\text{direct}} - R_{\pi^0 + \eta}} = \frac{\gamma_{\text{direct}}}{\gamma_{\text{incl.}}}$$

From conventional measurement

The spectrum

- Compare to NLO pQCD
 - L.E. Gordon and W. Vogelsang
 - Phys. Rev. D48, 3136 (1993)
- Above (questionable) pQCD
- Compare to thermal model
 - D. d'Enterria, D. Peressounko
 - nucl-th/0503054

2+1 hydro
$$T_0^{ave}$$
=360 MeV (T_0^{max} =570 MeV)
 τ_0 =0.15 fm/c

- Data above thermal at high p_T
- Data consistent with thermal+pQCD
- Needs confirmation from p+p measurement

- Photons measurements
 - -Calorimeter measurement
 - -Beam pipe conversions
 - Internal conversions
- Dielectron continuum

Dielectron spectrum

Integral:180,000

Run-by-run

TOISIEN Danins - Stony Drook University

Cocktail comparison

A prediction (Rapp, nucl-th/0204003) says direct thermal radiation is about the same as charm contribution in 1-2GeV/ c^2 , and it will be dominant as we go to higher p_T ...

- Data and cocktail absolutely normalized
- •Cocktail from hadronic sources
- •Charm from PYTHIA
 Predictions are filtered in *PHENIX*acceptance
- •Low-Mass Continuum: hint for enhancement not significant within systematics
- •Intermediate-Mass Continuum:
 - •Single e \rightarrow p_T suppression
 - Angular correlations unknown
 - •Room for thermal contribution

Comparison with theory

- calculations for min bias
- QGP thermal radiation included

- Systematic error too large to distinguish predictions
- Mainly due to S/B
- Need to improve
- → Hadron Blind Detector will improve S/B up to a factor 100

R.Rapp, Phys.Lett. B 473 (2000) R.Rapp, Phys.Rev.C 63 (2001) R.Rapp, nucl/th/0204003

Different centralities

0-10% 10-20% 20-40%

10-20% Au+Au @ √s = 200 GeV

40-60%

Mass ratios (A-B)/(0-100 MeV)

Ratio of different mass intervals to π^0 yield (0-100 MeV)

Summary

- Electrons and photons are penetrating hard and soft probes for relativistic heavy ion collisions
- Real Photons
 - Calorimeter measurement
 - Direct Photons measured in p+p in agreement with NLO pQCD
 - No initial state effects on direct photon production observable in d+Au (higher statistics run needed)
 - •Photons are not suppressed in Au+Au, therefore observed hadron suppression is medium effect
 - Systematic uncertainties at low p_T too large to make definite statement about thermal photon contribution
 - Beam pipe conversions: A chance to see thermal photons?
 - Internal conversions
 - Promising new technique to measure direct photons
 - Thermal photon scenario consistent for pT<3GeV/c
 - Same analysis of p+p is needed as confirmation
- Dielectron continuum
 - hint for centrality-dependent excess not significant within systematics
 - → Hadron Blind Detector upgrade
 - Attempt to look for a contribution of direct photon conversion in intermediate mass dilepton spectra
 - Looks not significant compared to predicted thermally radiated dilepton

Backup

The PHENIX experiment

•electrons:

- momentum reconstruction (1% resolution)
- particle ID: RICH (loose cuts because clean signature of conversion peak)
- •same or opposite arms: different pT acceptance
- •photons: EMCal (loose cuts →high efficiency ~ 98%)

track reconstruction assumes vertex in the interaction point

→ conversion at radius r≠0: e+e- pairs 'acquire' an opening angle

→ they acquire an invariant mass m = ∫ B dl ~ r > 0

if r=4 cm (beam pipe) m =20 MeV

Invariant e⁺e⁻ mass spectrum of Run 4 Au+Au: $\sqrt{s_{NN}} = 200 \text{ GeV}$

Pair properties

- Dalitz decays have a real opening angle due to the π^0 mass
- Conversion pairs have small intrinsic opening angle
 - magnetic field produces opening of the pair in azimuth direction $\Delta \varphi_0 = \varphi_0(e^-) \varphi_0(e^+) < 0$
 - orientation perpendicular to the magnetic field

Simulations: $N_{\gamma}^{hadr}(p_T)$ and $N_{\gamma}^{\pi^0 tag}(p_T)$

- Inclusive photon spectrum
 - $-\pi^0$, $\eta \rightarrow \gamma e^+e^-$
 - π^0 parameterization from measured data
 - η from m_T scaling, yield normalized at high p_T (0.45 from measurement)
 - Use Dalitz decay ($\pi^0 \rightarrow \gamma \gamma \sim \pi^0 \rightarrow \gamma \gamma^* \rightarrow \gamma e^+ e^-$ for $p_T > 0.8 \text{ GeV/c}$)
- All e^+e^- (from π^0 , η) in the acceptance $\rightarrow p_T$ spectrum of e^+e^-
- If γ from π^0 is also in acceptance
- $\rightarrow p_T$ spectrum of e⁺e⁻ from π^0

Torsten Dahms -

Theoretical calculation of π - π Annihilation >> 100 publication

- Low mass enhancement due to $\pi\pi$ annihilation
 - Spectral shape dominated ρ meson
- Vacuum p propagator
 - Vacuum values of width and mass
- In medium ρ propagator
 - Brown-Rho scaling
 - Dropping masses as chiral symmetry is restored
 - Rapp-Wambach melting resonances
 - Collision broadening of spectral function
 - Only indirectly related to chiral symmetry restoration
 - Medium modifications driven by baryon density
- Model space-time evolution of collision
 - Different approaches
 - Consistent with hadron production data
 - Largest contribution from hadronic phase

$$\frac{\mathbf{m}_{\rho}^{*}}{\mathbf{m}_{\rho}} \approx \left(\frac{\langle \overline{qq} \rangle_{\rho^{*}}}{\langle \overline{qq} \rangle_{0}}\right)^{1/3} = 1 - 0.16 \frac{\rho^{*}}{\rho_{0}}$$

Dielectron pairs -the history I low energy

<u>Data:</u> R.J. Porter et al.: PRL 79 (1997) 1229

<u>BUU model:</u> E.L. Bratkovskaya et al.: NP A634 (1998) 168

transport + in-medium spectral functions

DLS measured an excess of dielectron pairs over the expected yield
Never fully explained

ightarrow DLS puzzle !?

HADES (high acceptance, resolution, rate capability): first measurements

Excess over standard known sources compared with theory calculations

Comparison with DLS ongoing

Stony Brook University

Dielectron pairs -the history II

high energy

CERES measured an excess of dielectron pairs over the expected yield Attributed to ρ spectral function from $\pi\pi$ annihilation

NA60

 η : set upper limit ("saturating" the yield $\sim 0.2~GeV$

 \rightarrow lower limit for the excess at very low mass ω and f: fix yields to get a smooth underlying continuum

First measurement of the r spectral function
Clear excess above the cocktail ρ, centered at the nominal ρ pole and rising with centrality
Rule out interpretations...

Dielectron pairs at RHIC

Expected sources

- Light hadron decays
 - Dalitz decays π^0 , η
 - Direct decays ρ/ω and ϕ
- Hard processes
 - Charm (beauty) production
 - Important at high mass & high p_T
 - Much larger at RHIC than at the SPS
- Cocktail of known sources
 - Measure π^0 , η spectra & yields
 - Use known decay kinematics
 - Apply detector acceptance
 - Fold with expected resolution

Cocktail ingredients (pp): π^0

- most important: get the π^0 right (>80 %), assumption: $\pi^0 = (\pi^+ + \pi^-)/2$
- parameterize PHENIX pion data:

$$E\frac{d^{3}\sigma}{d^{3}p} = \frac{c}{\left(\exp(-ap_{T} - bp_{T}^{2}) + \frac{p_{T}}{p_{0}}\right)^{n}}$$

most relevant: the η meson (Dalitz & conversion)

- also considered: ρ , ω , η' , ϕ
- use mT scaling for the spectral shape,
 i.e.

$$p_T \rightarrow \sqrt{p_T^2 + m_{meson}^2 - m_\pi^2}$$

• normalization from meson/ π^0 at high pT as measured (e.g. η/π^0 = 0.45±0.10)

Combinatorial background I

Which belongs to which? Combinatorial background

$$\gamma \rightarrow e + e - \qquad \gamma \rightarrow e + e - \qquad \gamma \rightarrow e + e - \qquad \gamma \rightarrow e + e - \qquad \pi^0 \rightarrow \gamma e + e - \qquad \pi^0 \rightarrow \gamma$$

$$\gamma \rightarrow e + e - \tau^0 \rightarrow ve + e - \tau^0$$

$$\gamma \rightarrow e + e - \pi^0 \rightarrow \gamma e + e - e$$

$$\gamma \rightarrow e + e - \\
\pi^0 \rightarrow \gamma e + e$$

PHENIX 2 arm spectrometer acceptance:

dN_{like}/dm ≠ dN_{unlike}/dm → different shape → need event mixing like/unlike differences preserved in event mixing -> Same normalization for like and unlike sign pairs

Combinatorial background II

- Different independent normalizations used to estimate sys error
 - Measured like sign yield: Real++,--/ Mixed++,--
 - Event counting:
 - Geometrical Mean:
 - Track counting:
- After all required corrections,
 all the normalizations agree within 0.5%

Systematic uncertainty: ±0.25%

Nevent / Nmixed events

 $N \pm = 2\sqrt{N} + + N$

 $\langle N\pm \rangle = \langle N\pm \rangle \langle N- \rangle$

Mass ratios (A-B)/(0-100 MeV)

